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COMPARISON OF TWO UP-SCALING METHODS IN POROELASTICITY
AND ITS GENERALIZATIONS

James G. Berryman1

ABSTRACT
Two methods of up-scaling coupled equations at the microscale to equations valid at the mesoscale

and/or macroscale for fluid-saturated and partially saturated porous media are discussed, compared,
and contrasted. The two methods are: (1) two-scale and multiscale homogenization, and (2) volume
averaging. Both these methods have advantages for some applications and disadvantages for others.
For example, homogenization methods can give formulas for coefficients in the up-scaled equations,
whereas volume averaging methods give the form of the up-scaled equations but generally must be sup-
plemented with physical arguments and/or data in order to determine the coefficients. Homogenization
theory requires a great deal of mathematical insight from the user in order to choose appropriate scalings
for use in the resulting power-law expansions, while volumeaveraging requires more physical insight to
motivate the steps needed to find coefficients. Homogenization often is performed on periodic models,
while volume averaging does not require any assumption of periodicity and can therefore be related
very directly to laboratory and/or field measurements. Validity of the homogenization process is often
limited to specific ranges of frequency – in order to justify the scaling hypotheses that must be made –
and therefore cannot be used easily over wide ranges of frequency. However, volume averaging methods
can quite easily be used for wide band data analysis.
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INTRODUCTION
The earth is typically probed with seismic waves in the range1−100 Hz, with well-logging

tools in the range1 − 50 kHz, and samples of the earth in the laboratory from200 − 1000
kHz. The pertinent wave speeds for water and typical solid earth materials like quartz are,
respectively, 1.5 km/s and about 6.0 km/s. So the range of wavelengths of interest in the
field can vary from as much as 60 to 6000 m in the field to as little as 1.5 to 7.5 mm in the
laboratory. Clearly the main purpose of laboratory measurements of earth materials is generally
to elucidate the physical mechanisms of wave propagation inthe earth. But the differences
in the pertinent length scales is so great that unusual care must be taken to perform proper
interpretation of the results — taking into account all the inherent problems with up-scaling.
In particular, since earth materials are notoriously heterogeneous, it is very important to have
some means of studying the effects of these heterogeneitieson waves. So up-scaling in earth
sciences applications is often a critical issue for many important applications.
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The most common approach to dealing with earth heterogeneity for seismic waves is to
assume the earth is homogeneous locally, but composed of many layers (Ewing et al. 1957;
Brekhovskikh 1980). This approach can be useful for applications to large scale earth imaging
and earthquake analysis. But in matters where fluids in the earth are important, such as oil
and gas exploration, hydrology, etc., the elastic approximation is usually not good enough and
must either be supplemented or replaced altogether with more appropriate choices of equations
and analysis methods. Early examples of such analyses include Biot (1941), Frenkel (1944),
Gassmann (1951), Biot (1956a), Biot (1956b), Biot (1962) — all works which then provided a
strong foundation for modern poroelastic analysis. Sometimes viscoelastic analysis (Budiansky
and O’Connell 1976; O’Connell and Budiansky 1977) is used instead of poroelastic analysis,
but there are both laboratory and field data that cannot be adequately explained by viscoelastic
analysis, suggesting that the full poroelastic approach isessential in such cases.

Our goal then will be to give a brief accounting of just two of the most important methods
used to do up-scaling in poroelasticity and also multi-scale poroelasticity. The methods we
consider are: (1) two-scale and multiscale homogenization(Burridge and Keller 1981; Auriault
and Boutin 1994; Auriault and Royer 2002; Auriault 2002), and (2) volume averaging (Pride
et al. 1992; Pride and Berryman 1998; Berryman and Pride 1998; Whitaker 1999; Whitaker
2002; Wood et al. 2003). Both these methods have advantages for some applications and
disadvantages for others. In a longer review, we would also include (3) effective medium
theory and (4) mixture theory. But we must limit discussion here just to homogenization and
volume averaging.

HOMOGENIZATION THEORY
A two-space method of homogenization leading to equations having the form of Biot’s

equations has been presented by Burridge and Keller (1981).This method has been developed
by various authors including Bensoussan et al. (1978), Keller (1977), and Sanchez-Palencia
(1980). The method requires that the microscale of the heterogeneous porous medium is much
smaller than the macroscale of most interest. The method is systematic, leading to equations
at the macroscale from an analysis of the microscale behavior, which for the present problem
involves assuming the the solid components obey linearizedequations of elasticity, while the
fluid components obey linearized Navier-Stokes equations.Burridge and Keller (1981) show
that there are actually two possible solutions to the problem. One solution is essentially that
of Biot’s theory of wave propagation in poroelastic media. The other outcome is a set of
viscoelastic equations [recall Budiansky and O’Connell (1976) and O’Connell and Budiansky
(1977)]. The small quantityε, being the ratio of the microscale size to the macroscale size, is
used to characterize various scaling regimes. The difference leading to the two quite different
results found by Burridge and Keller is that, when the scaledviscosity is treated as being of
order ε2, they get the Biot-Gassmann equations, whereas when it is treated as order unity,
they obtain equations of viscoelasticity instead. In the language of poroelasticity, the case
leading to viscoelastic equations is what is normally termed “undrained,” meaning that the
fluid does not have sufficient time for its pressure to equilibrate at the microscale throughout
the macromedium on the time scales of interest. This failureto equilibrate can occur due to low
fluid permeabilities, high viscosity, very high wave frequencies, or combinations of all these
effects when present.

This approach involves assuming that any quantityQ can be treated as if it is a function of
the two spatial scalesx andy = x/ε. The macroscale isx and the microscale isy. Spatial
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gradients∇ of Q can then be usefully written as

∇Q(x,y) = ∇Q(x,x/ε) = ∇xQ + ε−1∇yQ. (1)

Thus, the scale separation can be explicitly and simply accounted for in such gradient equa-
tions. Furthermore, each quantityQ can also be treated as a function ofε, so that an asymptotic
expansion of the form

Q(x,y, ε) = Q0(x,y) + εQ1(x,y) +
ε2

2
Q2(x,y) + O(ε2) (2)

may be written. Combining (1) and (2) gives

∇Q = ε−1∇yQ0(x,y) + [∇xQ0(x,y) + ∇yQ1(x,y)] + O(ε), (3)

a result which gets used repeatedly in the subsequent analysis. Furthermore, Eq. (3) already
suggests the important result that, whenε is small —i.e., tending to zero, it must generally be
true that

∇yQ0(x,y) = 0, (4)

which is in fact a common result of this analysis.
If we let Ωs be the domain occupied by solid,Ωf the domain occupied by fluid, and∂Isf

be the interface between solid and fluid, then the linearizedequations for elasticity of the solid
in Ωs are

−ω2ρsus = ∇ · τ, where τ = L∇us, (5)

the linearized equations of Navier-Stokes for the fluid are

iωρfvf = ∇ · σf where σf = −pfI + νD∇vf and iωpf = −∇ · vf/Kf . (6)

The boundary conditions at the interfaces∂Isf are no slip: vf = iωus, and continuity of
normal stress:n ·σf = n ·τ. The fluid and solid densities areρf andρs, respectively. The fluid
viscosity isν, and its bulk modulus isKf . The stress tensors for fluid and solid areσf andτ ,
respectively, andpf is the fluid pressure.L is the fourth rank elastic stiffness tensor, andD is
the operator that produces the symmetrized deviatoric partof a second rank tensor.

We will use a notation slightly different from that of Burridge and Keller (1981) in order to
facilitate the comparisons between these results and thoseof Biot. Space constraints will not
permit us to follow the derivation of the equations further here. But one of the final macroscale
results of the analysis is given by

−ω2(ρu0 + ρfw) = ∇x · (τ0 − φp0I), (7)

whereρ = (1 − φ)ρs + φρf , andφ is the porosity. The overbar indicates a volume average
over the fast variabley. The second macroscale result is

−ω2 [ρfu0 + Γ(ω)w] = −∇xp0. (8)

whereΓ(ω) is a viscodynamic operator. The theory also shows that the macroscale stress and
fluid pressure are determined by

τ0 − φp0I = J∇xu0 + C∇x ·wI (9)
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and

p0 = −C∇x · u0 − M∇x · w, (10)

whereC andM are well defined scalar coefficients andJ is a fourth rank tensor, all of which
arise naturally within the two-scale analysis.

When equations (7)–(10) are compared with Biot’s equations, we find that the form of these
equations is identical — once we have taken care to interpreteach of these expressions in terms
of the corresponding expressions in the other set of equations, as was done in the original pub-
lication by Burridge and Keller (1981). Thus, the two-spacehomogenization method produces
exactly the same equations as Biot found using his variational approach. One advantage that
the present method has is that it also produces definite formulas for the coefficients in these
equations, so — at least in principle — model calculations can be done to produce a set of
theoretical examples to study the quantitative behavior ofthese coefficients. As far as I am
aware, this step has never been taken. It is not necessarily easy to compute these coefficients
from the formulas, but it would nevertheless be an interesting exercise in the theory to do so.

In contrast, the volume averaging methods to be discussed next also produce the same
equations, but they do not produce formulas for the coefficients. So the volume averaging
approach is phenomenological,i.e., producing a set of equations whose coefficients must be
determined experimentally.

VOLUME AVERAGING METHODS
Pride et al. (1992) studied the way in which the equations of motion for sound traveling

through a solid/fluid mixture can be derived from first principles when it is assumed that the
solid is porous, but contains only a single type of mineral. The fluid is homogeneous and
completely fills the pores. Various other authors have alsostudied volume averaging both
for the simple single-constituent poroelasticity and for multi-constituent generalizations such
as double-porosity poroelasticity (Tuncay and Corapcioglu 1995; Pride and Berryman 1998;
Berryman and Pride 1998; Pride and Berryman 2003a; Pride andBerryman 2003b).

The averaging theorem
The averaging theorem used by all these authors is due to Slattery (1967) and is based

on well-known mathematics (Green’s theorem and the divergence theorem) together with the
idea that in relatively small regionsvolume averages of spatial gradientsin statistically ho-
mogeneous media are presumably closely related togradients of volume averages. But care
must nevertheless be taken to account properly for behaviorof the averaged quantities at points
or surfaces where abrupt changes occur. In particular, whenthe quantity to be averaged ex-
ists on one side of an interface and does not exist on the otherside, an interior interface term
will contribute to the volume average of the derivative, butnot to the derivative of the volume
average.

Suppose thatQ is a quantity to be averaged.Q can be a scalar, vector, or tensor. For
convenience of the discussion, we will assume that the averaging volume is a finite sphere
centered at positionx, although other choices are also possible (Pride and Berryman 1998). We
label this volumeΩ(x) and the surface of this volume is∂Ω. The exterior surface has two parts
∂Ω = ∂E0+∂EQ, with ∂E0 being the part where the quantity of interestQ vanishes identically
and∂EQ being the part whereQ 6= 0. For example,Q could represent some physical quantity
in the pore space and0 in the solid — or vice versa — depending on immediate interest. In
addition to the exterior surface, there are also interior surfaces whereQ changes abruptly to
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zero and we label such surfaces∂IQ, for interior. The interior surface is the bounding surface
for the region we will labelΩQ, i.e., the region wherein the quantityQ to be averaged is
nonzero. With these definitions, Green’s theorem gives

∫
Ω

∇Qd3x =

∫
ΩQ

∇Qd3x =

∫
∂EQ

n̂QQdS +

∫
∂IQ

n̂QQdS, (11)

wheredS is the infinitesimal of the surface volume element, andn̂Q is the unit outward normal
vector from the region containing nonzeroQ. The main point of (11) is just that∂EQ + ∂IQ is
the entire bounding surface ofQ in the volumeΩ. As an example of the meaning of this result,
considerQ to be a vector quantity, take the trace of (11), and the resultis just a statement of
the well-known divergence theorem for vectors.

A second result of interest is that

∇

∫
Ω

Qd3x = ∇

∫
ΩQ

Qd3x =

∫
∂EQ

n̂QQdS. (12)

The result (12) follows from the fact that the volumesΩ(x) andΩ(x + δx) contain virtually
the same internal surfaces (in the limitδx → 0 they are obviously identical) and so these do
not contribute to the gradient.

Combining these results finally gives
∫

∂EQ

n̂QQdS = ∇

∫
Ω

Qd3x =

∫
Ω

∇Qd3x −

∫
∂IQ

n̂QQdS. (13)

Dividing by the total volumeV =
∫
Ω

d3x (which is a constant scalar, since the size ofΩ is the
same everywhere) contained inΩ gives the averaging theorem:

∇〈Q〉 = 〈∇Q〉 −
1

V

∫
∂IQ

n̂QQdS. (14)

Also note that the average〈Q〉 is an average over the whole volume ofΩ, while we also
sometimes need to consider the partial averageQ̄, related to the full volume average by

〈Q〉 = v̄QQ̄, (15)

wherev̄Q is the volume fraction ofΩ in whichQ is nonzero.
Finally, although this dependence is often not explicitly shown or even mentioned, all the

average quantities are in fact functions of the particular choice of averaging volumeΩ(x). In
principle, Ω(x) can be as large as the sample being studied, or as small as desired. The le-
gitimacy of the averaging theorem itself does not depend at all on the size of this averaging
volume. However, the usefulness of the resulting meso- or macro-scale equations does de-
pend on this choice and so some intermediate size is generally picked forΩ(x). Too small of
an averaging volume implies rapid fluctuations in the quantities of interest (like the fluid and
solid dilatations), while a very large averaging volume implies all the coefficients in the equa-
tions are universal constants and, therefore, can prevent us from studying the effects of local
inhomogeneities, whenever they are present.

Note, for example, that a most desirable (but not always correct) consequence of (14) is
for the final surface integral to vanish identically. The vanishing of this integral is natural in
statistically homogeneous media because the unit outward normal vector averages to zero ifQ
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is approximately constant on this surface. Vanishing of this surface integral is therefore often
highly likely in reasonably homogeneous media in 3D (averaging over a 2D surface), still likely
but somewhat less so in 2D (averaging over a 1D curve), and in general will not vanish in 1D
(averaging over just two points) for any but some rather trivial model problems. So volume
averaging methods should be replaced in 1D by exact methods such as, for example, Backus
averaging (Backus 1962) for pertinent 1D applications.

In wave problems, whenΩ is larger than the wavelength, the displacements will tend to
average to zero, which is clearly an undesirable result. Pride et al. (1992) provide further
discussion of criteria for choosing the size of the averaging volume. Thus, the choice of the
averaging volume is often based on the same or similar issuesnormally used to pick an REV
(representative elementary volume) in other methods, but we believe it is useful to maintain a
strict distinction between these two concepts as the motivations for choices made are sometimes
different.

Applications
Volume averaging has been applied successfully to derive the form of Biot’s equations of

poroelasticity (Pride et al. 1992), and more recetly a wide variety of other up-scaling prob-
lems in double-porosity poroelasticity (Tuncay and Corapcioglu 1995; Pride and Berryman
1998; Berryman and Pride 1998; Pride and Berryman 2003a; Pride and Berryman 2003b).
The method is well-suited to obtaining the forms of the equations, but needs to be supple-
mented when the values of the coefficients in the equations are required. The supplements can
obviously be obtained experimentally, in which case the theory can be treated as a phenomeno-
logical one — like Biot’s original formulation using Lagrangian variational principles. But,
being phenomenological is not a serious limitation since ofmost of the theories and equations
of mathematical physics are in fact phenomenological in thesame sense. There are some cases
in poroelasticity where various other theoretical means, including some of those already men-
tioned here, such as effective medium theories and periodiccell homogenization theory, can be
applied to obtain estimates of the constants (Mavko et al. 1998; Milton 2002). And in some
special cases, exact results are known (Berryman and Milton1991; Berryman and Pride 2002)
for a two-component solid matrix. In these situations the problems can be solved explicitly and
quite easily. In most other situations, it remains an open question whether the coefficients in
the equations can be determined accurately either by exact or some well-controlled but approx-
imate means.

CONCLUSIONS
Two methods of up-scaling coupled equations at the microscale to equations valid at the

mesoscale and/or macroscale for fluid-saturated and partially saturated porous media have been
discussed, compared, and contrasted. The two methods were:(1) two-scale and multiscale ho-
mogenization and (2) volume averaging. Both methods have advantages for some applications
and disadvantages for others. Homogenization methods can give formulas for coefficients in
the up-scaled equations, whereas volume averaging methodsgive the form of the up-scaled
equations but generally must be supplemented with physicalarguments and/or data in order
to determine the coefficients. Homogenization theory requires a great deal of mathematical
insight from the user in order to choose appropriate scalings for use in the resulting power-
law expansions, while volume averaging requires more physical insight to motivate the steps
needed to find coefficients. Homogenization often is performed on periodic models, while vol-
ume averaging does not require any assumption of periodicity and can therefore be related very
directly to laboratory and/or field measurements. Validity of the homogenization process is
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often limited to specific ranges of frequency – in order to justify the scaling hypotheses that are
made – and therefore cannot be used easily over wide ranges offrequency. However, volume
averaging methods can quite easily be used for wide band dataanalysis. So, we learn from
these comparisons that a researcher in the theory of poroelasticity and its generalizations will
benefit from being conversant with more than one of the methods to solve problems generally.

In this short review, we have not attempted to cover all methods that might be of interest and
value for the applications considered. In particular, we have avoided discussion of ensemble
averaging methods as well as other methods that might take the details of the spatial statistics
of the complex heterogeneous media directly into account, or provide additional information
about important corrections to the average equations. Recent publications by Drugan and Willis
(1996) and Drugan (2003) suggest that such methods may also be of great value in the future.
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